KEY ISSUES AND CHALLENGES IN THE DEEPENING PENETRATION OF DEMAND RESPONSE RESOURCES presentation by George Gross University of Illinois at Champaign-Urbana at the IEEE Distinguished Lecturer Program IEEE Power and Energy Society Chicago Chapter March 13, 2013

© 2013 George Gross, All Rights Reserved

OVERVIEW

□ We focus on the key developments in the

implementation of demand response resources or

DRRs, with special attention to their economic

and policy aspects

□ We highlight recent demand response challenges

© 2013 George Gross, All Rights Reserved

in the integration of deepening levels of DRR

penetration and success stories

OUTLINE

□ *DSM*: the predecessor to today's *DRR*s

Demand response: motivation and capabilities

□ Key demand response drivers

□ *DRR* challenges and limitations

□ DRR contributions

Concluding remarks

© 2013 George Gross, All Rights Reserved

3

FROM DEMAND-SIDE

MANAGEMENT TO *DRR***s**

DEMAND-SIDE MANAGEMENT

- □ In the regulated environment, the term demandside management (*DSM*) was used to refer to the implementation of programs that modify the demand of the system
- In practical terms, a DSM program is any measure that influences load on the *customer side* of the meter
- In analogy to supply-side resources, demand-side resources can be targeted for base, intermediate and peaking applications

© 2013 George Gross, All Rights Reserved

NATURE OF DRR

resources to meet the supply-demand balance

© 2013 George Gross, All Rights Reserved

DRRs ARE ATTRACTIVE

Jon Wellinghoff, Chairman, FERC: "There are tremendous benefits from demand response at very low costs, costs much lower than we can put any supply in place. This is the first fuel."
Jim Rogers, CEO, Duke Energy: "The most environmentally responsible plant you build is the one that you don't build."

© 2013 George Gross, All Rights Reserved

DRR PROVISION OF CAPACITY-BASED ANCILLARY SERVICES

DRR PROVIDED REGULATION SERVICE

© 2013 George Gross, All Rights Reserved

ECONOMIC LOAD PARTICIPATION

- □ The *NREL* study investigated the costs of providing additional spinning reserves
 - **O** each additional 5 % increment of committed spinning reserve is increasingly expensive
 - **O** additional spinning reserves can reduce but not eliminate contingency shortfalls
- Demand response is considerably more economic than spinning reserves and can result in major savings as it is more cost-effective to have DRRs address the hours of contingency reserves shortfalls rather than increase reserves for 8,760 hours © 2013 George Gross, All Rights Reserved

THE SMART GRID

The smart grid represents a modernized electricity delivery system that monitors, protects and automatically optimizes the operation of all its interconnected elements – from the central and distributed generator, through the highvoltage transmission grid and the distribution network to industrial users and building automation systems, to energy storage devices and to end-use consumers and their thermostats, electric vehicles, appliances and other devices.

© 2013 George Gross, All Rights Reserved

THREE SALIENT ASPECTS

- Combined digital intelligence and real-time communications: to improve the operations/control of the transmission and distribution grids
- Advanced metering solutions: to replace the legacy metering infrastructure
- Deployment of appropriate technologies, devices, and services: to access and leverage energy usage information in smart appliances and in the integration of renewable energy O2013 George Gross, All Rights Reserved

CUSTOMERS AND THE SMART GRID

ADVANCED METERING INFRASTRUCTURE (AMI) EVOLUTION

2011 STATS FOR THE TWO LARGEST AGGREGATORS

aggregator	Comverge	EnerNOC
demand portfolio size (MW)	4,564	7,100
annual portfolio growth (%)	22	34
revenues (million \$)	136.4	286.6
annual revenue growth (%)	14	2.1

© 2013 George Gross, All Rights Reserved

33

ENERNOC DEMAND PORTFOLIO GROWTH

FEDERAL REGULATORY INITIATIVES ON DRR

requires determination of the threshold price by the net benefits test (*NBT*) and the payment to each *DRR*, that satisfies the *NBT*, at the postcurtailment *LMP* for its accepted

FERC REGULATORY DEVELOPMENTS

key objectives	FERC Order No.
remove market barriers	719, 745
allow aggregation	719
provide AS by DRRs	719
incentivize for DRR participation in DAMs/RTMs	745
© 2013 George Gross, All Rights Reserved	31

FERC ORDER NO. 745

 FERC Order No. 745 specified the incentives to the DRRs for load curtailments in the DAMs
The Order mandated each ISO/RTO to perform a monthly net benefits test (NBT) to determine its monthly threshold price criterion, to serve as the trigger for the compensation to each DRR at its nodal LMP

FERC ORDER NO. 745

□ The Order represents a significant increase in

DRR incentives over past practices

□ These incentives provide major stimulus for *DRR*

participation in electricity markets

□ The Order represents a major push in the encou-

ragement of the implementation of additional DRR

REPRESENTATIVE STATE – LEVEL *TOU* **PRICING TARIFFS**

Arizona	1/3 of Arizona Public Service and Salt River Project residential customers voluntarily on time- of-use rates
California	all three IOUs approved to offer dynamic pricing tariffs in 2013
Arkansas and Oklahoma	state commissions approved residential variable peak pricing on a default basis with the option to opt-out
Illinois	Ameren Illinois and Commonwealth Edison received ICC approval to establish real-time pricing programs
Connecticut	all electric distribution companies must offer critical peak or real-time pricing programs to all customer classes
	© 2013 George Gross, All Rights Reserved 42

DRR LIMITATIONS AND

CHALLENGES

UNINTENDED CONSEQUENCES OF DRRs

20-MW CURTAILMENT AT BUS 3

SIMULATION STUDIES

We discuss *DRR* recovery energy impacts with a series of backcast sensitivity studies for the year
2010 using *MISO* offer, load, and generation mix data

□ We simulate the day-ahead market outcomes in

2010 under varying DRR penetration levels,

utilization intensity and recovery energy values © 2013 George Gross, All Rights Reserved

SIMULATION STUDIES

□ We compare *DRR* economic/emission impacts of

these cases with respect to the no DRR case

□ We use the average locational marginal prices

(ALMPs) and the average per MWh CO₂ emissions

as the basic metrics of comparison

© 2013 George Gross, All Rights Reserved

DRR IMPACT CASE STUDY TEST SYSTEMS		
study system name	test system	source of offer, load and generation mix data
S ₅₇	IEEE 57-bus	MISO
	© 2013 George Gross, All Rights Reser	ved

DRR IMPACT SENSITIVITY STUDIES

parameter	range
DRR capacity	1 – 20 % of peak load
DRR recovery energy percentage	0 – 120 % of curtailed energy
DRR intensity (low/medium/ high)	2, 4, 6 out of 8 potential curtailment hours

© 2013 George Gross, All Rights Reserved

S₅₇ PRICE IMPACTS UNDER HIGH DRR INTENSITY

S₅₇ EMISSION IMPACTS UNDER HIGH DRR INTENSITY

STUDY FINDINGS AND CONCLUSIONS

The consideration of energy recovery reduces drastically the system-wide economic benefits of

DRR curtailments and, below certain penetration

levels, makes curtailments uneconomic

DRR utilization at medium to high intensity, modest

recovery percentages, and penetrations within the

FERC's achievable participation range may lead to: © 2013 George Gross, All Rights Reserved

65

STUDY FINDINGS AND CONCLUSIONS

O uneconomic outcomes or severely diminished

ALMP reductions

O emission increases or severely diminished

emission reductions

Deepening penetrations of wind generation may

alleviate the severely diminished ALMP and CO₂

reductions

© 2013 George Gross, All Rights Reserved

DRR CONTRIBUTIONS

VALUE ADDED BY DRRs

□ *DRRs* add value to the electric grid as a cost-

effective and clean resource for providing

"energy" and ancillary services

□ The deployment of *DRR*s presents opportunities

to increase the effectiveness of grid utilization

and address the operational challenges in the

integration of renewable resources

COLD STORAGE LOAD

enterprise	Four Seasons Produce	e, Inc.
location	Pennsylvania	
program	EnerNOC DemandSM synchronized reserves load response	IART TM , PJM and emergency
curtailment source	chiller reductions	
curtailment range	0.4 – 1 <i>MW</i>	
annual rebates	\$ 25,000	

0000

Polar CHILLER

71

Source: Case Studies, EnerNOC, http://www.enernoc.com/our-resources/case-studies © 2013 George Gross, All Rights Reserved

COLD STORAGE LOAD

enterprise	VersaCold
location	Ontario, Canada; Pennsylvania
program	EnerNOC DemandSMART TM
curtailment source	equipment shutdowns, temperature adjustments
curtailment limit	3.2 <i>MW</i>
annual rebates	\$ 160,000

Source: Case Studies, EnerNOC, http://www.enernoc.com/our-resources/case-studies © 2013 George Gross, All Rights Reserved

MANUFACTURING LOAD

enterprise	Leggett & Platt
location	Texas and Illinois
program	EnerNOC DemandSMART TM , emergency response service, PJM emergency load response
curtailment source	partial/total operational shutdowns
curtailment limit	12 <i>MW</i>
annual rebates	\$ 400,000

Source: Case Studies, EnerNOC, http://www.enernoc.com/our-resources/case-studies © 2013 George Gross, All Rights Reserved

73

GOVERNMENT FACILITIES

agency	U.S. DOD
location	throughout the United States
program	demand response
curtailment source	building energy usage adjustments
curtailment limit	> 300,000 <i>buildings</i>
annual rebates	\$ 14,000,000

Source: White House highlights demand response activities, opportunities, Platts, http://www.platts.com/RSSFeedDetailedNews/RSSFeed/ElectricPower/6201047 © 2013 George Gross, All Rights Reserved

CONCLUDING REMARKS

